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1 Introduction

Particle Swarm Optimization (PSO) is an effective algorithm for non-linear and
complex high-dimensional problems. One major drawback of PSO is that its
performance strongly depends on the choice of its hyper-parameters (i.e., inertia,
cognitive and social factors, minimum and maximum velocity), Fuzzy Self-Tuning
PSO (FST-PSO) is a novel swarm intelligence population-based meta-heuristic
able to tune all settings at run-time, yielding a completely settings-free version
of PSO [7]. The main innovation of FST-PSO is that each particle adjusts its
own hyper-settings, using a fuzzy reasoner that uses as input variables to the
proximity to the (current) best particle in the swarm and the improvement with
respect to the previous iteration. In this paper, I provide a brief explanation about
how to install and exploit the python implementation of FST-PSO, highlighting
the simplicity of this library.

Competitive with state of the art methods [7], FST-PSO have been successfully
applied to several real-world problems and disciplines, e.g., systems biology [8,
13], cancer research [9, 6, 10], molecular dynamics [2], geology [12], computational
neurosciences [11], epidemiology [5], fuzzy clustering [3], and fuzzy modeling
[4]. In general, FST-PSO can be applied in all situations in which some real-
valued parameters of a model must be optimized with respect of some objective
function (e.g., parameter estimation, calibration, training of neural networks, and
regression problems).

2 Installation and usage

Although the source code is available for download on GITHUB at the address
https://github.com/aresio/fst-pso, the easiest way to install FST-PSO is
by using pip, by using the command pip install fst-pso. Once FST-PSO is
installed in the system, it can be used in a python script to minimize a single
objective function inside a bounded search-space. Both information must be
provided by the user. For example, let us assume to be interested in optimizing
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the Ackley function in the search space [−5, 5]D. Listing 1.1 shows how to perform
this optimization using FST-PSO.

Listing 1.1. ’Example of FST-PSO usage.’

1 from f s t p s o import FuzzyPSO
2 FP = FuzzyPSO ( )
3 D = 10 # dimensions o f the problem
4 FP. s e t f i t n e s s ( Ackley )
5 FP. s e t s e a r c h s p a c e ( [ [ −5 , 5 ] ] ∗D)
6 b e s t s o l , b e s t f i t = FP. s o l v e w i t h f s t p s o ( )

The first step is to import and create a FuzzyPSO object (lines 1–2). Then,
the user must specify the fitness function to be minimized1 (line 4) and the
search space in which particles will move (line 5) using the set fitness and
set search space methods, respectively. Finally, the optimization can be launched
by using the solve with fstpso method (line 6) which returns the best solution
found and its fitness. In order to work with FST-PSO, the fitness function must
have two characteristics: it receives as argument a particle and returns as output
the fitness value of that particle.

Please note that this is all the information that is needed to optimize any func-
tion with FST-PSO: as a matter of fact, the algorithm automatically determines
the swarm size according to an internal heuristics based on the number of dimen-
sions. However, since the optimal choice for the number of particle is strongly
problem-dependent, if can be forced by the user by using the set swarm size

method. Similarly, as a default FST-PSO executes a maximum of 100 itera-
tions. This settings can be override by specifying the optional keyword argument
max iter to the solve with fstpso method. Finally, FST-PSO assume a mini-
mization problem; however, a maximization problem can be easily turned into
a minimization problem by changing the sign of the fitness value (e.g., using a
decorator).

FST-PSO accepts several optional parameters and arguments (e.g., non-
uniform initialization of particles, the possibility of disengaging some fuzzy
rules, distributing the fitness evaluations over some high-performance computing
facility). A summary of currently supported options can be found at the following
address: https://github.com/aresio/fst-pso/wiki. Notably, FST-PSO offers
the possibility of providing some initial “educated guesses” for the particles, a
functionality that was exploited by Swarm-CG [2] developers to accelerate the
convergence to optimal molecular structures in coarse-grained simulations of
nano-materials.

3 Future developments

FST-PSO is a settings-free meta-heuristics that was designed to perform single-
objective optimization (in particular, minimization). However, many complex

1 Of course, the Ackley function, used in this example, must have been defined before.
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real-world problems require the simultaneous optimization of multiple conflicting
objective functions. Under these circumstances, multi-objective optimization is
more suitable to obtain a good approximation of the Pareto front of optimal
dominating candidate solutions. The main future development of FST-PSO will
be the integration of the velocity update formulas of multi-objective variants of
PSO (notably, MOPSO [1]), in order to make FST-PSO able to tackle this class
of problems.
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