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Abstract. Hybrid algorithms are powerful search algorithms obtained
by the combination of metaheuristics with other optimization techniques,
although the most common hybridization is to apply a local solver method
within evolutionary computation algorithms. In many published works
in the literature, such local solver is run in different ways, sometimes
acting on the perturbed elements and other on the best ones, and this
raises the question of when it is best to run the local solver and on which
elements it acts best in order to improve the reliability of the algorithm.
Thus, three different ways of running local search in an immune algo-
rithm have been investigated, and well-known community detection was
considered as test-problem. The three methods analyzed have been as-
sessed with respect their effect on the performances in term of quality
solution found and information gained.

Keywords: Hybrid algorithms · hybrid metaheuristics · hybrid immune
algorithms · Hybrid-IA · community detection · modularity optimization
· network science.

1 Introduction

Evolutionary computation represents today a consolidated and established class
of algorithmic methodologies able to tackle hard and complex optimization prob-
lems mainly thanks to their ability to be easily applied on new and unknown
problems, and, in general, on all those problems whose knowledge about their
features and structures are very limited. Among the evolutionary computation
methodologies, the immune-inspired algorithms represent a powerful algorithmic
class, which takes inspiration by the principles and dynamics of the biological
immune system (IS). What makes the IS very interesting and source of inspira-
tion from a computational perspective is its ability in learning, detecting, and
recognizing foreign and dangerous entities [8].

However, although many methodologies inspired by biology and nature have
been developed, applied effectively in many combinatorial optimization prob-
lems, it clearly emerges from the literature that just on these kinds of problems
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their hybridization, that is their combination with concepts and/or components
of other optimization techniques (e.g. Local Search algorithms), turns out to
be much more efficient and successful, thus proving to be very powerful search
algorithms [1]. The basic idea of this combination is to exploit the strengths of
one to overcome the weaknesses of the other: random-search performs an ex-
cellent exploration of the search space (thanks to its stochastic nature), whilst
deterministic approach, for instance, is useful for refine and improve the current
solutions found. There are many different ways to generate hybrid methods, but
the most common and popular is combine evolutionary algorithms and local im-
prover methods (such as Local Search, Hill-Climbing, etc.), which are applied
one after another, using the output of the former as input for the latter. Further-
more, it is also common in this case that the revised and improved individual,
by the local improver method, replaces the original one in the population.

In this paper we want to investigate on when is better to perform the Local
Search (LS), and if, in the overall, replace the original solution with the revised
one by LS is the best choice. In light of this, a Hybrid Immune Algorithm, called
Hybrid-IA, has been taken into account in an attempt to answer these ques-
tions. Hybrid-IA has been considered as it was successful applied in several
and various combinatorial optimization problems. [3,4,5,2]. Thus, the effect of
the local search on the performances of Hybrid-IA has been investigated con-
sidering three different positions in the evolutionary cycle where to run the local
improver method: (1) acting and refining the best solutions found so far (to be
run just after selecting the best elements for the next generation); (2) acting on
the perturbed elements and replacing them (to be run after the hypermutation
operator, see Alg. 1); and, finally, (3) acting always on the perturbed elements
but producing a new population, whose individuals will compete to the selection
of the new population for the next generation.

In order to analyse which among of the three methods best affects the perfor-
mance of Hybrid-IA, the well-known Community Detection problem has been
considered, which is considered one of the most important problems in Network
Sciences and Graph Analysis. The study of community structures inspires intense
research activities to visualize and understand the dynamics of a network at dif-
ferent scales [9,10,7]. The goal of this task is uncovering the inherent community
structure of a network, which means to discover those groups of nodes sharing
common properties. The modularity is certainly the evaluation metric most used
to assess the quality of the uncovered communities in a network [15], based on
the idea that a random graph is not expected to have a community structure,
therefore the possible existence of communities can be revealed by the difference
of density between vertices of the graph and vertices of a random graph with
the same size and degree distribution. Given an undirected graph G = (V,E),
with V the set of vertices (|V | = N), and E the set of edges (|E| = M), the
modularity of a community is defined as:

Q =
1

2M

[
N∑
i=1

N∑
j=1

(
Aij −

didj
2M

)
δ(i, j)

]
, (1)
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where Aij is the adjacency matrix of G, di and dj are the degrees of nodes i and
j respectively, and δ(i, j) = 1 if i, j belong to the same community, 0 otherwise.

Several artificial networks have been produced using the well-known LFR al-
gorithm [14,13] in order to assess what proposed method affect best in term of so-
lution quality found, and information gained. The use of artificial networks allows
to inspect these three methods under different complexity scenarios. Analysing
all experimental results emerges that performing the local improver just after the
hypermutation operator, that means to act directly on the elements produced
by the random search, is the one to produce best efficiency and reliability on
Hybrid-IA since it allows to perform a better and wide exploration of the search
space and this is useful to jump out from local optima.

2 The Hybrid Immune Algorithm

Immune Algorithms (IA) are among the most used population-based metaheuris-
tics, successfully applied in search and optimization tasks. They take inspiration
from the dynamics of the immune system in performing its job of protecting
living organisms. One of the features of the immune system that makes it a
very good source of inspiration is its ability to detect, distinguish, learn, and
remember all foreign entities discovered [8]. The presented Hybrid Immune Al-
gorithm, called Hybrid-IA, belongs to the special class Clonal Selection Algo-
rithms (CSA) [16,5], whose efficiency is due to the three main immune operators:
(i) cloning, (ii) hypermutation, and (iii) aging. The overall scheme of Hybrid-
IA, proposed in [5,2], is shown in Algorithm 1. It is based on two main concepts:
antigen (Ag), which represents the problem to tackle, and B cell, or antibody
(Ab) that represents a candidate solution (x), i.e., a point in the solution space.
At each time step t, the algorithm maintains a population of d candidate solu-
tions to the problem tackled. The population is randomly initialized at the time
step t = 0. Then, just after the initialization step, the fitness function, specific
to the problem, is evaluated for each randomly generated element (x ∈ P (t))
by using the function ComputeFitness(P (t)). The algorithm ends its evolution-
ary cycle when the halting criterion is reached. For this work, it was fixed to a
maximum number of generations (MaxGen).

The first immune operator to take place is the Cloning Operator (6th line in
Algorithm 1). This operator simply copies dup times each B cell producing an
intermediate population P (clo) of size d× dup. We used a static cloning in order
to avoid premature convergences. Indeed, if a number of clones proportional
to the fitness value is produced instead, we could have a population of B cells
very similar to each other, and we would, consequently, be unable to perform
a proper exploration of the search space getting easily trapped in local optima.
Once created the copies of any B cell, to each of those is assigned an age, which
determines how long it can live in the population, from the assigned age until it
reaches the maximum age allowed (τB). Specifically, a random age chosen in the
range [0 : 2

3τB ] is assigned to each clone [16]; in this way, each clone is guaranteed
to stay in the population for at least a fixed number of generations ( 1

3τB in the
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worst case). The age assignment and the aging operator play a crucial role on
Hybrid-IA performances, and any evolutionary algorithm in general, because
they are able to keep a right amount of diversity among the solutions, thus
avoiding premature convergences [6,17].

Algorithm 1 Pseudo-code of Hybrid-IA.

1: procedure Hybrid-IA(d, dup, ρ, τB)
2: t← 0
3: P (t) ← InitializePopulation(d)
4: ComputeFitness(P (t))
5: while ¬StopCriterion do
6: P (clo) ← Cloning(P (t), dup)
7: P (hyp) ← Hypermutation(P (clo), ρ)
8: ComputeFitness(P (hyp))

9: (P
(t)
a , P

(hyp)
a )← Aging(P (t), P (hyp), τB)

10: P (select) ← (µ+ λ)−Selection(P
(t)
a , P

(hyp)
a )

11: P (t+1) ← LocalSearch(P (select))
12: ComputeFitness(P (t+1))
13: t← t+ 1;
14: end while
15: end procedure

The Hypermutation Operator has the main goal of exploring the neighbour-
hoods of solutions by evaluating how good each clone is (7th line in Algorithm
1). The mutation rate is determined through an inversely proportional law to
the fitness function value of the B cell considered, that is, the better the fitness
value of the element is, the smaller the mutation rate will be. In particular, let x
be a cloned B cell, the number of mutations is determined by M = b(α× `)+1c,
with ` the length of the B cell (i.e. ` = |V |), and α representing the mutation rate

obtained as α = e−ρf̂(x), where ρ determines the shape of the mutation rate, and
f̂(x) is the fitness function normalized in the range [0, 1]. Naturally, the mutation
operator that acts on a single element of the cloned B cell is problem-dependent.

The static Aging Operator in Hybrid-IA acts on each mutated B cells by
removing older ones from the two populations P (t) and P (hyp) (9th line in Algo-
rithm 1). Basically, let τB be the maximum number of generations allowed for
every B cell to stay in its population; then, once the age of a B cell exceeds τB
(i.e., age=τB+1), it will be removed independently from its fitness value. How-
ever, an exception is done in Hybrid-IA for the best current solution, which
is kept into the population even if its age is older than τB . Such a variant of
the aging operator is called elitist aging operator. In the overall, the main goal
of this operator is to allow the algorithm to escape and jump out from local
optima, assuring a proper turnover between the B cells in the population, and
producing, consequently, high diversity among them.
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After the aging operator, the best d survivors from both populations P
(t)
a

and P
(hyp)
a are selected, in order to generate the temporary population P (select),

on the local search will be performed (10th line in Algorithm 1). Such a selection
is performed by the (µ+ λ)-Selection Operator, where µ = d and λ = (d× dup).
The operator identifies the d best elements among the set of offspring and the old
parent B cells, ensuring consequently monotonicity in the evolution dynamics.

The main idea behind the Local Search operator is to refine and improve in
deterministic way the solutions produced by the stochastic mutation operator.
In this study the affect and impact of the position where to run the local search
within Hybrid-IA is inspected (see Algorithm 1). Specifically, three approaches
have been taken into account:

– Method A: applying the local search operator just after the selection op-
erator, acting, consequently, on the individuals already selected to produce
the new population for the next generation. In this way, the local search
is always applied to the best solutions, intensifying the exploration in their
relative neighbourhood.

– Method B: applying LS to the population generated by the hypermuta-
tion operator, where each revised individual replaces the hypermutated one,
maintaining the same population. In this way, it is applied to a wider set of
solutions generated from the current ones through mutation allowing a bet-
ter exploration of the search space. Of course, the computational complexity
is higher than in the previous case because it is applied to a population of
d× dup.

– Method C: applying LS to the hypermutated individuals, as in the previ-
ous method, but producing a new temporary population, which will compete
with the other populations to the selection for the next generation. In this
way, the algorithm keeps memory of the discoveries made via random search,
which generates diversity in the population, and, in the same time, it carries
out a careful exploration of their neighbourhood via local search. Computa-
tional complexity is the same as the previous method.

2.1 Hybrid-IA for the Community Detection

Once described the structure and features of Hybrid-IA in general, in this sec-
tion all details on the operators and local search developed specifically for the
community detection problem are reported. Any B cell in the population is rep-
resented as subdivision of the vertices of the graph G = (V,E) in communities.
A solution x is a sequence of N = |V | elements in the range [1, N ] such that
xi = j indicates that the node i belongs to the cluster j. In the initialization
phase (t = 0), each element of the population is randomly generated assigning
each vertex i to a group j, with j ∈ [1, N ]. The aim of the designed hypermuta-
tion operator is to explore the search space in order to create new communities
by moving a nodes variable percentage from existing communities. For each B
cell, it chooses randomly two communities ci and cj (ci 6= cj) among all existing
ones, and, with a probability given by α, all vertices in ci are moved to cj . The
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α mutation rate is, then, defined as the probability to move a node from one
community to another one.

The designed Local Search, introduced in [2], allows to speed up the con-
vergence of the algorithm and intensify the search in the neighbourhood of each
solution. The idea is to deterministically improve a solution using the Move Ver-
tex operator [11]. This operator moves a node from its community to another
one within its neighbours, taking into account the gain of modularity, that can
be defined as the variation in modularity produced when a node is moved from
a community to another. The modularity Q, defined in Equation (1), can be
rewritten as:

Q(c) =

k∑
i=1

[
`i
M
−
(
di

2M

)2
]
, (2)

where k is the number of communities identified; c = {c1, . . . , ci, . . . ck} is a par-
tition of V ; li and di are, respectively, the number of links inside the community
i, and the sum of the degrees of vertices belonging to the i community. The gain
of modularity of a vertex u ∈ ci is the modularity variation produced by moving
u from ci to cj , that is:

∆Qu(ci, cj) =
lcj (u)− lci(u)

M
+ dV (u)

[
dci − dV (u)− dcj

2M2

]
, (3)

where lci(u) and lcj (u) are the number of links from u to nodes in ci and cj
respectively, and dV (u) is the degree of u when considering all the vertices V .
If the gain is greater than 0, then moving node u from ci to cj produces an
improvement in modularity. Consequently, the goal of the move vertex operator
is to find a node u to move to an adjacent community in order to maximize
the gain of modularity. The local search, for each solution, works sorting the
communities in increasing order with respect the ratio of internal links and
degree of the community; in this way, it tries to repair the solutions starting
from poorly formed communities, which are produced by the hypermutation
operator (random search).

3 Experimental Results

In this section all experiments performed are presented in order to inspect what
is the best position where to run the local search within the evolutionary cycle
of Hybrid-IA. For this study, the community detection has been considered as
the test problem, and, specifically, several artificial networks have been taken
into account as benchmark instances. These networks were generated by LFR
algorithm, proposed in [14,13], and have been used because they allow us to per-
form our study on different complexity scenarios thanks their diverse features.
Note that the validity of this benchmark is given by faithfully reproducing the
keys features of real graphs communities. In particular, networks with number of
nodes 300, 500, 1000, and 5000 have been generated, with average degree 15, 20,
and 25, and maximum degree 50. Further, for all |V | values, the exponent of the
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degrees distribution was set to τ1 = 2, whilst the distribution of community sizes
to τ2 = 1. Minimum and maximum of the communities’ size for such artificial
networks were considered, respectively, minc = 10 and maxc = 50. The mixing
parameter µt, which identifies the relationship between the node’s external and
internal degree with respect to its community, was instead set to 0.5: greater is
the value of µt, greater is number of edges that a node shares with nodes out-
side of its communities. For each network parameters configuration 5 random
instances have been generated. For all experiments performed on all tested net-
works the following parameters setting have been used for Hybrid-IA: B cells
population size d = 100; number of generated clones dup = 2; ρ and τB , re-
spectively, to 1.0 and 5. All these parameters have been identified both from the
knowledge learned by previous works [16,5,2], and from preliminary experiments
carried out. Maximum number of generations has been considered as stopping
criterion and was set to MaxGen = 100. 50 independent runs were also per-
formed. In order to assess which of the three method is the most efficient and
reliable, in addition to the convergence behaviour analysis and solution (mod-
ularity) quality obtained by each method, also the Information Gain as been
considered as evaluation metric. This entropic function measures the quantity
of information the system discovers during the learning phase (see [12,3]).

For all network instances the convergence analysis was carried out for the
three methods. Due to the space limit only the most significant ones are reported.
In Figures 1 and 2 are shown the convergence plots for the LFR instances with
1000 nodes and average degree k of 15 and 20 respectively. From these plots
can be noted that method A reaches high modularity values in the first 10
generations, afterwards improves very slowly. The same trend is also visible in
the average fitness of the population, with a peak in the first generations and a
slow growth for the rest of the run. Methods B and C, on the other hand, have
a growth much more constant and linear, both in terms of the best solution and
average of the population. The average fitness curve is very close to the best
solution one, indicating then a population composed of solutions with values of
modularity very similar to each other and consequently very homogeneous. This
is also supported by the information gain curve, in which the peak is reached
in the earliest generations, after that it stays in a steady-state for the rest of
the execution (Figures 1c and 2c), while method A needs more generations to
converge to the same value reached by the other two methods.

The same situation is obtained in the networks with 5000 nodes and average
degree k equal to 20 and 25 (Figures 3 and 4). Also in these plots, method A has
a much slower convergence than the other two methods and maintains a certain
degree of diversity within the population, demonstrated by the distance between
the two curves: best solution, and average fitness of the population. In this case,
in both methods B and C, the two curves have a higher slope, which suggests
that with more generations they could achieve better solutions.

The greater diversity introduced by methods B and C, allows to better ex-
plore the search space and to find solutions with a higher modularity value. The
Table 1 shows the results of the experiments of the three methods carried out
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Fig. 1: Convergence behavior of the three methods on LFR(1000,15,0.5) graph.
(a) Average and (b) best fitness value of the population versus generations. (c)
Information gain and standard deviation.

on benchmark instances. In particular, in the table are reported the maximum
value of modularity (Q), average number of communities (K) and computa-
tional time, all averaged over 5 random instances. From these results, can be
noted that on the networks with 300 nodes, all three methods reach what is
most likely the maximum modularity value, detecting the same number of com-
munities. On the other hands, for the instances with 500 nodes, only for k = 20
method A reaches the same modularity value of methods B and C, while for
k = 15 reaches a slightly lower modularity value, about 1.79×10−4, which leads
to a different number of communities detected (17.6 for method A versus 16.8
for both method B and C). The difference in modularity becomes greater as
the number of nodes increases. For the instances with 1000 nodes, method A
reaches a lower modularity value than the other two methods (about 10−3 on
average for both instances), as observed in the respectively convergence plots.
The other two methods, B and C, reach the best modularity value for k = 20
and k = 15 respectively, with a minimum difference between each other. The
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Fig. 2: Convergence behavior of the three methods on LFR(1000,20,0.5) graph.
(a) Average and (b) best fitness value of the population versus generations. (c)
Information gain and standard deviation.

Table 1: Results of the three methods on LFR Benchmarks. The results are
averaged on 5 random instances and calculated over 100 independent runs.

A B C

Instance K Q Time K Q Time K Q Time

(300, 15, 0.5) 11.6 0.392061 8.3 11.6 0.392061 14.5 11.6 0.392061 15.5
(300, 20, 0.5) 11.2 0.386560 9.4 11.2 0.386560 16.9 11.2 0.386560 17.9
(500, 15, 0.5) 17.6 0.436989 13.7 16.8 0.437168 24.6 16.8 0.437168 26.1
(500, 20, 0.5) 17.0 0.430526 16.3 17.0 0.430526 29.7 17.0 0.430526 31.3
(1000, 15, 0.5) 34.4 0.467073 28.0 30.0 0.468122 51.2 30.4 0.468205 53.9
(1000, 20, 0.5) 37.0 0.468532 33.8 33.0 0.469451 62.6 32.2 0.469442 65.2
(5000, 20, 0.5) 196.4 0.493532 182.4 190.2 0.493985 346.0 189.4 0.493994 353.5
(5000, 25, 0.5) 193.0 0.493379 228.8 185.4 0.493741 438.1 184.6 0.493740 427.1
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Fig. 3: Convergence behavior of the three methods on LFR(5000,20,0.5) graph.
(a) Average and (b) best fitness value of the population versus generations. (c)
Information gain and standard deviation.

same results can be observed for the network with 5000 nodes, where method A
is behind the other two methods in terms of modularity, although with a lower
gap with respect the instances with 1000 nodes (about 4×10−4), while methods
B and C achieve the best modularity value for k = 25 and k = 20 respectively.
Moreover, unlike smaller instances (300, and 500 nodes), on the networks with
1000 and 5000 nodes the number of communities found by methods B and C
is different. Finally, from the computational time point of view, methods B and
C, as expected, take about 90% more time than method A, but, nevertheless,
they allow a better exploration of the search space, and then obtaining solutions
with higher modularity values.

4 Conclusions

In this research paper, three different positions where run the local search within
an immune algorithm, called Hybrid-IA, have been investigated in order to as-
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Fig. 4: Convergence behavior of the three methods on LFR(5000,25,0.5) graph.
(a) Average and (b) best fitness value of the population versus generations. (c)
Information gain and standard deviation.

certain which of the three acts best on the algorithm’s performance. Community
detection problem has been considered for the analysis of this study, and the
comparison between the three methods has been conducted with respect the
solution quality found and learning process quality. Several artificial networks
were generated (|V | ∈ {300, 500, 1000, 5000}) through which was possible to in-
spect the three methods in various complexity scenarios. The obtained outcomes
highlight that running the local search just after the hypermutation operator is
the best choice for this kind of optimization problem, because in this way higher
diversity is produced that help the algorithm specially on larger and complex
networks.
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