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Abstract. Many practically relevant computing artifacts are forms of
graphs, as, e.g., neural networks, mathematical expressions, finite au-
tomata. This great generality of the graph abstraction makes it desir-
able a way for searching in the space of graphs able to work effectively
regardless of the graph form and application. In this paper, we propose
GraphEA, a modular evolutionary algorithm (EA) for evolving graphs.
GraphEA is modular in the sense that it can be tailored to any graph
optimization task by providing components for specifying how to vary
edges and nodes, and how to check the validity of a graph. We designed
GraphEA by building on previous EAs dealing with particular kinds
of graphs and included a speciation mechanism for the preservation of
structural innovations and one for the gradual complexification of the
solutions structure. To validate the generality of GraphEA, we applied it
to 3 radically different tasks (regressions, in two flavors, text extraction
from examples, evolution of controllers for soft robots) and compared its
effectiveness against less general approaches. The results are promising
and indicate some directions for further improvement of GraphEA.
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1 Introduction and related works

The ever more ubiquitous neural networks, mathematical expressions that model
in an interpretable way the dependency of one variable on other variables, finite
automata constituting a broad model for computation, are all actionable forms
of graphs. Graphs are thus an abstraction of great practical relevance. It would
be hence desirable to leverage this generality for enabling the usage of a general
optimization technique that, given a way for evaluating the quality of a graph,
searches the space of graphs for the one with greatest quality. On the one hand,
that optimization technique should be applicable to all kinds of graphs, i.e.,
regardless of the nature of their nodes and edges, without requiring the user to
tune many parameters; on the other hand, it should be effective enough to be
useful in practice.

In this paper, we head towards the ambitious goal of designing that opti-
mization technique by proposing an evolutionary algorithm (EA) and a repre-
sentation for evolving graphs, that we called GraphEA. GraphEA works on any
graph, directed or undirected, whose nodes are defined over a predefined set and
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edges are labeled with labels defined over another set. GraphEA is a form of evo-
lutionary computation (EC). The optimization consists in evolving a fixed-size
population of candidate solutions (here graphs) to a given problem by means of
the reiterated applications of two steps: selection and variation. For variation in
particular, GraphEA is modular: it provides a template scheme for variation of
the solutions that has to be instantiated to a particular form of graphs by the
user. For example, when using GraphEA for evolving neural networks, edges are
labeled with real numbers (the weights of the corresponding connections) and
one variation consists in perturbing those numbers with some noise.

While designing GraphEA, we took into account previous works in which EC
has been applied to graphs and included in our EA (a) a mechanism for preserv-
ing the structural innovation introduced by variation operators (speciation) and
(b) a mechanism for starting from an initial population of simple graphs that
get more complex during the evolution (complexification).

We performed an experimental evaluation of GraphEA for validating the
claim that it is general and sufficiently effective in the search. To this aim, we
considered three radically different problems in which the graph abstraction is
instantiated in different ways: regression, where we use graphs for representing
networks of mathematical operators or of base univariate functions, text extrac-
tion from examples, where graphs represent discrete finite automata, and neu-
roevolution of controllers for soft robots, where graphs represent neural networks
with free topology. We compared our proposed approach to challenging baseline
methods specific to each problem and the results are highly promising.

The idea of applying EC for optimizing a graph is not new. Several appli-
cations have been proposed and some approaches exhibiting some degrees of
generality exist, e.g., [18, 23]. However, only recently researchers devoted their
effort to design a general approach that can be applied to any kind of graphs,
as we do in this paper: one of the most interesting proposals is likely the one by
Atkinson et al. [2, 1]. In their EGGP (Evolving Graphs by Graph Programming),
the authors rely on rule-based graph programming to perform variation in an
evolutionary optimization search. In a recent study [20], EGGP is experimentally
compared against other representations and EAs suitable for evolving graphs:
the authors conclude that there is not a single EA, nor a single representation,
that systematically outperforms the other options in the considered problems.
This result suggested that more research has to be done about general opti-
mization techniques for graphs and hence somehow motivated us in designing
GraphEA. For space constraints, we cannot present a direct comparison against
EGGP: we reserve this activity for future work.

2 GraphEA

We consider the task of optimization in the set GN ,E of directed decorated graphs,
later simply graphs, defined over a set N of nodes and a set E of edge labels.

A graph g ∈ G is a pair (N, e) composed of a set N ⊆ N of nodes and a
function e : N ×N → E ∪∅. N is the set of nodes of g: for a given pair n1, n2 ∈
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N ×N , an edge connecting n1 to n2 exists in g if and only if e(n1, n2) 6= ∅ and
its label is e(n1, n2) ∈ E . Note that, in general, e(n1, n2) 6= e(n2, n1).

We assume that, for the purpose of optimization, a validity predicate v :
GN ,E → {True,False} is available for delimiting a subset G′N ,E ⊆ GN ,E in
which performing the search: we say that a graph g is valid iff v(g) is true, i.e.,
iff v belongs to G′N ,E . Moreover, we assume that a fitness function f : G′N ,E → R
exists which measures the quality of any valid graph for a given task. The task
consists in finding a graph that maximizes (or minimizes) f .

2.1 Representation

GraphEA employs a direct representation, i.e., genetic operators operate directly
on graphs. However, the representation is general, not tight to a specific kind of
nodes or edge labels, i.e., specific N or E sets. Consistently, the genetic operators
are agnostic with respect to the nature of nodes and edges, but assume that
ways for building or modifying nodes and edges are available: we call factory a
stochastic method for obtaining a node or edge label in, respectively, N or E ; we
call mutation a stochastic method for modifying an edge label, i.e., a stochastic
operator from E to E . We denote by n ∼ fN (e ∼ fE) a node (edge label)
obtained from a node (edge label) factory fN . We denote by e ∼ mE(e′) an edge
label obtained by mutating an edge label e′ with a mutation mE .

In Section 3, we present three cases of application of GraphEA to different
domains, i.e., with different sets N , E along with the corresponding factories and
mutations.

In the following, we describe the three mutation operators GN ,E → GN ,E
used in GraphEA (edge addition, edge modification, node addition). For all the
operators, if, after the application of the operator on the parent the resulting
graph is not valid, then the parent graph is returned, hence ensuring the closure
property with respect to G′N ,E .

Despite there are some indications in the EC literature that the crossover
operator is beneficial in specific cases (e.g., [8, 6]), in a preliminary experimental
evaluation we found that this operator does not significantly improve the opti-
mization effectiveness and efficiency of GraphEA, while requiring a fair amount
of additional complexity in the representation; we hence decided to not include
it for the sake of simplicity.

Edge addition. Given an edge label factory fE , this operator builds the offspring
graph gc = (Nc, ec) from a parent graph gp = (Np, ep) as follows. First, Nc
is set to Np. Then, a random pair of nodes n1, n2 is chosen in N2

c such that
ec(n1, n2) = ∅, i.e., that they are not connected in the parent graph. Then ec is
set to behave as ep with the exception of the input n1, n2 for which ec(n1, n2) =
e ∼ fE .

In other words, the edge addition adds a new edge to the graph with an edge
label obtained from fE .



4 Eric Medvet and Alberto Bartoli

Edge modification. Given an edge label mutation mE : E → E and a mutation
rate pmut ∈ [0, 1], this operator builds the offspring graph gc = (Nc, ec) from a
parent graph gp = (Np, ep) as follows. First, Nc is set to Np. Then, for each pair
of nodes ni, nj ∈ N2

c for which ep(ni, nj) 6= ∅, ec(ni, nj) is set to ep(ni, nj) with
probability 1− pmut or to e ∼ mE(ep(ni, nj)) with probability pmut.

In other words, the edge modification modifies the labels of a fraction pmut

(on average) of existing edges using mE .

Node addition. Given two edge label mutations msrc
E ,mdst

E and a node factory
fN , this operator builds the offspring graph gc = (Nc, ec) from a parent graph
gp = (Np, ep) as follows. First, a pair of nodes n1, n2 is chosen in N2

c such that
ep(n1, n2) 6= ∅. Second, a new node n ∼ fN is obtained from the node factory
fN . Third, Nc is set to Np ∪ {n}. Finally, ec is set to behave as ep with the
exceptions of the three input pairs (n1, n2), (n1, n), (n, n2), for which it holds
ec(n1, n2) = ∅, ec(n1, n) = esrc ∼ msrc

E (ep(n1, n2)), and ec(n, n2) = edst ∼
mdst

E (ep(n, n2)).
In other words, the node addition selects an existing edge, removes it, and

adds a new node obtained from fN in the middle of the two endpoints of the
removed edge: the endpoint are then connected to the new node with edges
whose labels are mutations of the removed edge.

2.2 Evolutionary algorithm

Two of the three genetic operators described in the previous section can intro-
duce structural modifications in a graph, i.e., the number of nodes of edges can
change. In the context of the evolutionary optimization, those structural mod-
ifications are innovations that can be, on the long term, beneficial; yet, on the
short term, they might affect negatively the fitness of a graph. In order to allow
the structural modifications enough time to express their potential, if any, we
employ in GraphEA an innovation protection mechanism.

In brief, the protection mechanism is a form of speciation based on fitness
sharing [21] inspired by the similar mechanism employed in NEAT [23]. Individ-
uals in the population are partitioned in species: all the individuals of the same
species have the same chance of reproducing that depends on the fitness of one
representative of the species; moreover, species larger than a predefined size have
their best individuals moved in the next generation, as well as the global best (a
form of elitism). Intuitively, an innovative individual resulting from a structural
modification of a fit parent will likely belong to the same species of the parent
and hence will not be penalized, in terms of chances of reproducing, if its fitness
is lower. However, if it is fitter, the entire species will potentially benefit, having
a higher chance to reproduce.

Beyond the speciation mechanism, the generational model of GraphEA is
based on a fixed-size population that is updated iteratively without overlapping
(i.e., the offspring replaces the parents) and with elitism. The offspring is built
from the parents by applying, for each individual, one of the three mutation
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operators chosen with predefined probabilities. For space constraints, we give
the detailed description of the EA of GraphEA in Appendix A.

The salient part of the EA of GraphEA is the speciation procedure: given a
collection of graphs P and a threshold τ (a parameter of GraphEA) this proce-
dure returns a partition (P1, P2, . . . ) of P . The partition is built iteratively in a
bottom-up agglomerative fashion starting from the empty set of subsets of P ,
as follows. For each g ∈ P , if the partition is empty, a new subset {g} = P1

is added to the partition; otherwise, the distances d1, d2, . . .between g and the
representative of each subset Pi are computed—the representative being the first
graph added in each subset. Then the shortest distance di? , with i? = arg mini di
is compared against the threshold τ : if di? < τ , g is added to Pi? ; otherwise a
new subset {g} is added to the partition. As distance between graphs we use the
Jaccard distance between the corresponding sets of nodes.

3 Experimental evaluation

We performed three suites of experiments by applying GraphEA to three differ-
ent domains: (symbolic) regression, text extraction, evolution of controllers of
simulated soft robots.

The goals of the experiments were two: (a) demonstrate the general applica-
bility of GraphEA to radically different domains and (b) verify that this gener-
ality does not come at the cost of unpractical search effectiveness. For the latter
goal, we considered for each of the three cases at least one viable alternative
based on a different representation, that we used as a baseline for the search
effectiveness. We did not finely tune the main parameters of GraphEA: after
a very shallow exploratory analysis to τ = 0.25, smin = 5 (see Appendix A),
α = 0.75 (see Appendix A); similarly, we set pedge-add = 0.6, pedge-mod = 0.2,
and pnode-add = 0.2, unless otherwise indicated.

We performed all the experiments with a Java framework for evolutionary
optimization (JGEA, publicly available at https://github.com/ericmedvet/

jgea), that we augmented with a prototype implementation of GraphEA. For
the experiments involving the simulated robots, we used 2D-VSR-Sim [16].

3.1 Regression

The goal of regression is to fit a model that accurately describes how an de-
pendent numerical variable y depends on one or more independent numerical
variables x, based on a learning set of observations {xi, yi}i. If the space of
the models is the space of mathematical expressions, this task is called symbolic
regression (SR). Symbolic regression is one of the most crowded playfields in
EC, the most prominent role being played by tree-based genetic programming
(GP) [12]. Building on plain GP, many improvement are continuosly proposed
and evaluated on SR (e.g., [25]). At the same time, the ability of GP to solve prac-
tical SR problems has been exploited more and more in other research fields [7].

https://github.com/ericmedvet/jgea
https://github.com/ericmedvet/jgea
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We applied GraphEA to SR in two ways. In the first case, the graphs evolved
by GraphEA are a generalization of the abstract syntax trees of the common
tree-based GP: nodes are either mathematical operators, variables (input or
output), or constants; directed edges are not labeled—we denote this variant by
OG-GraphEA, OG standing for operator-graph. In the second case, the graphs
are networks of univariate basic functions, each one processing a weighted sums
of incoming edges; this representation basically corresponds to compositional
pattern producing networks (CPPNs) [22] and we denote it by CPPN-GraphEA.

As fitness function for regression, we use the Mean Squared Error (MSE) with
linear scaling, that have been showed to be beneficial when tackling symbolic
regression with GP [11]. Let {ŷi}i be the output of a candidate solution on the

input {xi}i, its fitness is mina,b
1
n

∑i=n
i=1 (aŷi + b − yi)2, n being the number of

input cases.

OG-GraphEA for SR. In this representation, graphs are directed and nodes
are either independent variables (x1, x2, . . . , the actual number depending on
the specific problem), the dependent variable y, constants (0.1, 1, and 10), and
mathematical operators (we experimented with +, −, ×, p÷, and plog). p÷
and plog are the protected versions of the division and the logarithm, with
x p÷ 0 , 0,∀x and plog(x) , 0,∀x ≤ 0. Edges are not actually labeled in
OG-GraphEA: formally E is a singleton with a single placeholder element e0.
Since, by definition, the set of nodes N in a graph cannot contain duplicates, for
allowing a graph to contain many nodes with the same mathematical operator,
we formally set N to {x1, x2, ...}∪{y}∪{0.1, 1, 10}∪{+,−,×,p÷,plog}×N: in
other words, operator nodes are decorated with an index that does not matter
when using the graph for computing an y value out of a x.

The validity predicate for OG-GraphEA tests if a graph g meets all the
following criteria: (i) g is acyclic, (ii) the node y has exactly 1 predecessor (i.e.,
another node n for which e(n, y) = e0) and no successors, (iii) for each operator
node, it has the proper number of predecessors (≥ 1 for + and ×, 2 for − and
p÷, 1 for plog), (iv) for each constant node, it has no predecessors.

Concerning the genetic operators, the edge label factory used in the edge
addition always returns e0. The edge modification operator is disabled (i.e.,
pedge-mod = 0), since it is not meaningful. In node addition, both edge label
mutations are set to the identity (i.e., msrc

E (e0) = mdst
E (e0) = e0) and the node

factory produces a randomly chosen mathematical operator indexed with a ran-
dom integer (chosen in a sufficiently large range in order to rarely have two nodes
with the same operator and index in the same graph).

Finally, concerning the initialization of the population, it builds valid graphs
with all the variable and constant nodes and no operator nodes. As a direct
consequence of the validity predicate, only one node (either a constant or a
independent variable node) is connected to the output node y. This form of
initialization resembles the complexification principle of NEAT: the evolution
starts from simple solutions, hence benefiting from a smaller search space, and
then makes them more complex, as needed, during the evolution.
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CPPN-GraphEA for regression. In this representation, graphs are directed,
nodes are either xi, y, the constant 1, or base functions R→ R (we experimented
with the ReLu, the Guassian, 1 p÷x, and x2). Edge labels are real numbers (i.e.,
E = R). As for OG-GraphEA, in N the base functions are decorated with an
index.

The validity predicate for CPPN-GraphEA tests if a graph g meets all the fol-
lowing criteria: (i) g is acyclic, (ii) the node y has exactly at least one predecessor
and no successors, (iii) for each constant or xi node, it has no predecessors.

The edge label factory in the edge addition genetic operator is the Gaussian
distribution with 0 mean and unit variance (fE = N(0, 1)). The edge label mu-
tation in the edge modification consists in perturbing the label with a Gaussian
noise N(0, 1). The edge label mutations in the node addition are the identity,
for the source node, and a replacement with a new label chosen with N(0, 1),
for the target node; the node factory produces decorated base functions with
uniform probability, as for OG-GraphEA.

For the population initialization, the same complexification principle of OG-
GraphEA is followed. Graphs in the initial populations contains only xi, y, and
the constant and all the possible edges are present, labeled with a value chosen
with N(0, 1).

Procedure and results. We considered a set of four “classical” symbolic re-

gression problems, chosen according to the indications of [28]: Keijzer-6 (
∑i=bx1c
i=1

1
i ),

Nguyen-7 (log(x1 + 1) + log(x21 + 1)), Pagie-1 ( 1
1+x−4

1

+ 1
1+x−4

2

), and Poly4

(x41 + x31 + x21 + x1)—we refer the reader to [28] and our publicly available code
for the details about the fitness cases for each problem.

As baselines, we considered a standard implementation of GP (with the
same building blocks of OG-GraphEA) and a grammar-based version of GP
(CFGGP [27], with a grammar specifying the same operators and constants of
GP and OG-GraphEA) augmented with a diversity promotion strategy [3] that
consists in attempting to avoid generating individuals whose genotype is already
present in the population. For both GP and CFGGP we reproduce individu-
als using subtree-crossover for 0.8 of the offspring and subtree-mutation for the
remaining 0.2; we used tournament selection with size 5 for reproduction and
truncation selection for survival selection after merging the offspring with the
parents at each generation (i.e., overlapping generational model); we built the
initial population with the ramped half-and-half method [15]. For each of the
four EAs, we set npop = 100 and stopped the evolution after 100 generations.

For each problem and each EA, we performed 20 independent runs with
different random seeds. Table 1 summarizes the results in terms of the fitness
of the best solution at the end of the evolution (median and standard deviation
across the runs).

It can be seen that CPPN-GraphEA obtains the best fitness in 3 on 4 prob-
lems, while not performing well on Keijzer-6. On the other hand, OG-GraphEA
struggles in all the problems, obtaining the last or second-last effectiveness. We
interpret this finding as a consequence of the different expressiveness of the
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Table 1. Best final fitness for regression (the lower, the better).

EA Keijzer-6 Nguyen-7 Pagie-1 Poly4

CFGGP 0.001±0.004 0.028±0.046 16.571±15.305 0.499±3.042
CPPN-GraphEA 0.242±0.229 0.001±0.003 2.169± 8.080 0.320±0.925
OG-GraphEA 0.010±0.060 0.149±0.214 24.340±25.211 3.807±2.673
GP 0.002±0.002 0.040±0.067 22.642±11.709 0.410±2.334

two representations: where the required degree of composition between build-
ing blocks is larger, CPPN-GraphEA finds good solutions by approximation,
whereas OG-GraphEA is not able to (within the 100 generations) build the
required substructures in the graph. As a further confirmation of this interpre-
tation, we looked at the size of the found solutions (number of nodes and edges
for GraphEA, number of tree nodes in GP and CFGGP) and found that it was
much lower for the former: it turns out, hence, that the complexification strategy
is detrimental for OG-GraphEA.

3.2 Text extraction

Syntax-based extraction of text portions based on examples is a key step in many
practical workflows related to information extraction. Different approaches have
been proposed for solving this problem, based, e.g., on classical machine learn-
ing [17], deep learning [26], or EC [5, 14]. One of the most effective approaches,
in which the outcome of the learning from the examples is a regular expression,
is based on GP [4]: building blocks for the trees are regular expression con-
structs and constants (i.e., characters) and the regular expression is obtained by
traversing the tree in a depth-first order.

Formally, the text extraction problem is defined as follows. An extractor is
a function that takes in input a string s and outputs a (possibly empty) set
S of substrings of s, each one identified by the start and end index in s. A
problem of text extraction consists in, given a string s and a set S of substrings
to be extracted from s, learning an extractor that, when applied to s, returns
S. In practical settings, the learned extractor should also generalize beyond the
examples represented by s, S and learn the underlying pattern of substrings of
interest. This additional objective makes the task harder [5]: we here do not
focus on the generalization ability and consider instead just the simpler version
of the text extraction problem. The fitness of a candidate extractor is the char
error rate measured on a pair s, S: each character is considered as a data point
in a binary classification setting, i.e., it can be a positive, if it belongs to a string
of S, or a negative, otherwise. The char error rate, measured on a pair s, S of an
extractor extracting Ŝ from S, is the ratio of characters in s that are misclassified
by the extractor, i.e., that “belong” to S but not to Ŝ or the opposite.

We here exploited the generality of GraphEA for exploring a radically differ-
ent approach with respect to GP for regular expressions: we evolve deterministic
finite automata (DFAs) in which transitions are set of characters. Indeed, the
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idea of evolving a DFA for binary strings have been already proposed in [14]. In
terms of GraphEA, given a learning dataset s, S in which the positives charac-
ters form a set A, E is the set of non-empty subsets of A, i.e., E = P(A) \ ∅,
and N = {True,False} ×N, i.e., nodes can be accepting or not accepting and
are decorated with an index (for the same reason of OG-GraphEA and CPPN-
GraphEA). When applying the DFA to an input string, we consider the node
with index 0 as the starting state.

The validity predicate for CPPN-GraphEA tests if a graph g (i) has exactly
one node decorated with 0 and, (ii) for each node, the union of the labels (that
are subsets of A) of all outgoing edges is empty.

As edge label factory for the edge addition operator we use a random sam-
pling of singletons in P(A). The edge label mutation for the edge mutation
operator works as follows: given an edge label A, if |A| = 1, it adds a random
element of A to A; otherwise, if A = A, it removes a random element from A;
otherwise, it applies one of the previous modifications with equal probability. For
both the edge label mutations in the node addition operator, we use the iden-
tity; the node factory samples with uniform probability {True,False} × N0,
i.e., picks randomly among all possible nodes not decorated with 0.

For the population initialization, we apply again the complexification princi-
ple. Graph in the initial population are composed of only two nodes—one being
decorated with 0, and hence being the starting state, the other being an accept-
ing node—connected by an edge labeled with a randomly chosen singleton of
P(A).

Procedure and results. We defined a procedure for building synthetic datasets
s, S for text extraction based on two parameters related to the problem hardness:
the size ns ≤ 10 of the alphabet of s and the number of positive examples nS .
Regardless of the values of these parameters, the set S of substrings is always
composed of the matches of the following three regular expressions: 000000,
111(00)?+(11)++, and (110110)++. Given the values for ns, nS , a random s
composed of the characters corresponding to the first ns digits is generated
randomly and incrementally until it contains at least nS matches for each of the
three regular expressions. We experimented with values ns = 2, nS = 5, 3, 5,
4, 8, and 4, 10.

As a comparison baseline, we experimented with the same variant of CFGGP
described in Section 3.1, with the same parameters and with a grammar tailored
for building regular expressions composed of the characters in A and the con-
structs (?:r), ., and r|r, r being a placeholder for another regular expression.
Again, for both the EAs, we set npop = 100 and stopped the evolution after 100
generations.

For each problem and each EA, we performed 20 independent runs with
different random seeds. Table 1 summarizes the results in terms of the fitness
of the best solution at the end of the evolution (median and standard deviation
across the runs).
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Table 2. Best final fitness for text extraction (the lower, the better).

EA ns = 2, nS = 5 ns = 3, nS = 5 ns = 4, nS = 10 ns = 4, nS = 8

CFGGP 0.160±0.030 0.120±0.050 0.092± 0.037 0.097± 0.044
GraphEA 0.169±0.027 0.093±0.035 0.045± 0.015 0.043± 0.008

The figures in Table 2 suggests that GraphEA outperforms CFGGP for all
but the hardest problem (ns = 2, nS = 5), for which the difference is not neat.
A representation based on graphs is perfectly suitable for learning DFAs (that
are graphs) and DFAs are a natural choice for extractors, at least if a compact,
human-readable representation of the extractor is required. As a result, GraphEA
seems to be more capable of searching the space of solutions than CFGGP that,
in this case, works on a less direct representation.

3.3 Robotic controller optimization

Robots composed of soft materials constitute a promising approach to many
tasks for which rigid robots are not suitable. Due to their nature, they can
interact with fragile or sensible objects or exhibit degrees of compliance to the
environment that are not feasible with rigid counterparts. One category of soft
robots that is of further interest is the one of voxel-based soft robots (VSRs), that
are composed of many simple deformable blocks (the voxels) [10]. Beside being
soft, VSRs are inherently modular and represent hence a stepping-stone towards
the ambituous goal of auto-reproducing machines. Unfortunately, designing a
VSRs is a complex task, because the nontrivial interactions among its many
components are difficult to model. For this reason, VSR design has been tackled
with optimization, often by means of EC [13, 24]: many aspects of a VSR can
be subjected to optimization, most notably the shape and the controller. We
here focus on the latter and consider the same scenario of [24], that we briefly
summarize here—we refer the reader to the cited paper for the full details.

Given a 2-D shape for a VSR in which each one of the voxel is equipped
with zero or more sensors (i.e., a VSR body), a controller is a law according
to which the actuation value (a signal in [−1, 1] corresponding to expansion or
contraction of the voxel) of each voxel is determined at each time step based
on the numerical values read by the sensors. Formally, the controller is hence
a function from Rm to Rn, m being the number of sensor readings and n the
number of voxels. The problem of robotic controller optimization consists in
learning the controller function that results in the best degree of achievement
of a given task with a given body. We here focus on locomotion, and the fitness
that measures the degree of achievement is the distance traveled by the VSR in
a simulation lasting 20 s (simulated time).

For this problem, we used GraphEA for directly representing a artificial neu-
ral network (ANN) without a predefined topology, very similarly to NEAT—i.e.,
we realized a form of neuroevolution. All the parameters for the representation
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(E , N , the genetic operators, and the population initialization) are the same
of CPPN-GraphEA, with the exceptions of the available base functions for the
nodes, for which here we used only the tanh, and the output nodes, which are
y1, . . . , yn.

Procedure and results We considered the task of locomotion and two bodies:
a “worm” composed of 6 × 2 voxels and a “biped” composed of a 4 × 2 trunk
and two 1× 1 legs. In both cases, the voxels in the top row were equipped with
sensors sensing the x- and y-rotated-velocity of the voxel (see [16]), the bottom
row (i.e., the legs for the biped) voxels with touch sensors, and all the voxels
with current area ratio sensors.

As a baseline, we used CMA-ES [9], a popular numerical optimization al-
gorithm that proved to be particularly effective in many reinforcement learning
settings, for optimizing the weights of a fixed-topology multilayer perceptron
(MLP): following the findings of [24], we used a topology composed of a single
hidden layer with 0.65(m + 1) nodes, m + 1 being the number of input nodes
(one plus the bias). As an aside, the present experiment is, to the best of our
knowledge, the first application of CMA-ES for optimizing the controller of a
VSR; nevertheless, successful applications of CMA-ES has been proposed for
other kinds of modular robots (e.g., [19]). We used the basic version of CMA-ES
with an initial vector of means randomly extracted in [−1, 1]p, p being the num-
ber of weights in the MLP. The two considered bodies corresponded to MLPs
having p ≈ 400 and p ≈ 800 weights for the biped and the worm, respectively.

For each problem and each EA, we performed 20 independent runs with
different random seeds. Since CMA-ES uses a population size that depends on
the dimension p of the search space, we stopped the evolution, for both EAs,
after 20 000 fitness evaluations, while still using npop = 100 for GraphEA. Table 1
summarizes the results in terms of the fitness of the best solution at the end of
the evolution (median and standard deviation across the runs).

Table 3. Best final fitness for controller optimization (the greater, the better).

EA Biped Worm

GraphEA 65.0±8.3 43.5± 5.2
CMA-ES 94.7±9.9 104.0±10.4

It can be seen that in this case GraphEA does not compare favorably with the
baseline, the gap in the final fitness being consistently large across all the exper-
iments. In an attempt to understand this experimental observation, we analyzed
the size (number of nodes and edges) of the graphs generated by GraphEA and
found that, despite it consistently grows over the evolution, it never reaches the
(fixed) size of the MLPs optimized by CMA-ES. Interestingly, the gap was larger
for the worm (on average ≈ 320 vs. ≈ 445) than for the biped (on average ≈ 500
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vs. ≈ 920) and the performance gap was larger for the worm than for the biped.
We did not investigate in detail if every weight in the MLPs optimized by CMA-
ES was actually important (ANNs may be pruned without being hampered in
effectiveness), we think that the performance gap of GraphEA is at least partly
due to the longest time it takes to evolve a graph that is complex enough for the
task at hand. This limitation may be a consequence of many design choices for
GraphEA, the most prominent being the initialization procedure following the
complexification principle.

4 Concluding remarks

Our experimental evaluation of GraphEA on three radically different problems
based on the graph abstraction shows that the proposed approach is indeed gen-
eral and effective. Specifically, GraphEA is competitive with more specific forms
of optimization tailored to regression and text extraction from examples, while it
is clearly outperformed by a state-of-the-art technique in neuroevolution of soft
robot controllers. While this outcome is in line with other recent findings [20],
in the sense there is not a single EA, nor a single representation, that systemat-
ically outperforms the other options across different problems, by digging in the
results we noticed that when GraphEA struggles in matching the effectiveness of
other optimization techniques, it often produces solutions which are remarkably
simpler (and hence likely less expressive) than those of the baseline counterpart.
We interpret this finding as an opportunity to further improve GraphEA. We
speculate that some form of self-tuning of the population initialization and vari-
ation operators, capable of adaptively driving the search to the exploration of
the search space where solutions are more complex, could be beneficial not only
to GraphEA, but also to similar approaches, as EGGP.

Acknowledgments. We thanks Luca Zanella for the CMA-ES implementation
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HPC cluster within the CINECA-University of Trieste agreement.
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A The algorithm of GraphEA

Algorithm 1 shows the iterative algorithm of GraphEA. The most salient part is
in the offspring generation part (lines 4–20). After the population P is partitioned
in n species (line 5, explained below), the offspring P ′ is composed by first adding
the best individuals (lines 6–12) and then reproducing the individuals in each
species (lines 13–20). In the first step, the overall best and the best of each
species with size ≥ smin, a parameter of the algorithm, are added to P ′.

1 function evolve():
2 P ← initialize(npop)
3 foreach i ∈ {1, . . . , ngen} do
4 P ′ ← ∅
5 ({g1,1, . . . , g1,s1}, . . . , {gn,1, . . . , gn,sn})← speciate(P, τ)
6 P ′ ← P ′ ∪ {best(P)}
7 foreach i ∈ {1, . . . , n} do
8 if si ≥ smin then
9 P ′ ← P ′ ∪ {best({gi,1, . . . , gi,s1})}

10 end

11 end
12 n′

pop ← npop − |P ′|
13 r ← ranks(g1,1, . . . , gn,1)
14 foreach i ∈ {1, . . . , n} do
15 o← n′

popα
ri 1∑i=n

i=1 α
ri

16 foreach c ∈ {1, . . . , o} do
17 P ′ ← P ′ ∪ {mutate(gi,c mod si)}
18 end

19 end
20 P ← P ′

21 end
22 return best(P )

23 end
Algorithm 1: The GraphEA algorithm.

In the second step, for generating the n′pop offspring, one representative in-
dividual is randomly chosen in each of the n species: the representatives are
then sorted according to their fitness and their rank is stored in r. Then, a
number o of offspring is reserved to each species depending on the rank of the
corresponding representative, according to a rank-proportional scheme where
o = n′popα

ri 1∑i=n
i=1 α

ri
. α ∈ ]0, 1] is a parameter of the algorithm: the closer to

1, the less the preference to fittest species. Finally, the overall offspring for the
next generation is completed by reproducing the individual of each species until
a corresponding number o of new individuals are obtained. Since, in general, a
species might get a reserved a number o larger than the current size, some indi-
vidual of that species might reproduce more than one time (c mod si in line 17).
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Reproduction consists in the application of one of the three mutation operators
presented above with probabilities pedge-add, pedge-mod, pnode-add (summing to 1).
The evolution terminates after ngen iterations.
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